Should nanoparticles be used in sunscreens? — a unique study

(First use of stable isotopes in nanotechnology)

Outline

• Metal oxides in sunscreens/Issues/ Previous testing
• Stable Isotope Tracing ZnO
• Human Trials ZnO
• Results blood ZnO
• Summary ZnO
• Should we be concerned?

• (TiO$_2$)
• (Products with active ingredients in Australia & US)
To minimise UV exposure, 2 types of active ingredients are used in sunscreens – “chemical” (“organic”) and “physical” (“inorganic”)

Disadvantages of “chemical” sunscreens
- absorption through the skin – found in breast milk/urine
- certain chemicals may cause damage to sensitive organs or hormone receptors (endocrine disruptors)
- may cause skin irritation a mixture of UV-absorbers is needed to provide full (broad) spectrum protection
- can interact & break down in sunlight (e.g. avobenzone needs octocrylene)

Advantages of “physical” sunscreens containing metal oxide nanoparticles
- Zinc oxide (ZnO) and titanium dioxide (TiO₂) are largely stable
- nanoparticles of ZnO and TiO₂ appear clear on the skin
- ZnO and TiO₂ provide broad spectrum protection against UVA and UVB
Nanoparticles are tiny!

Human hair
~80,000 nanometers wide

1000 nanometres

Nanoparticles in sunscreens are typically ~10-30nm

Source: Maxine McCall CSIRO
Skin absorption of nano zinc (and TiO$_2$) oxide - The Issues

- Use of nanoparticles in cosmetics is highly controversial: CC 2016 survey 13% respondents wouldn’t use sunscreen because of nanoparticles
- Friends of the Earth
 - have called for a moratorium on their use,
 - convinced the Victorian Teachers Union to ban the use of sunscreens containing NP at child-care centres
 - didn’t believe the manufacturers so carried out their own testing with NMI
Previous testing

Diffusion cells with skin
- Human excised
- Pig

Tape stripping

In Vivo rodents/pigs/rabbit
(Sadrieh et al TiO$_2$ minipigs/mice CSIRO)

Multiphoton Microscopy in vivo
Source: Andrei Zvyagin MU/ Tarl Prow/Michael Roberts
STABLE ISOTOPE TRACING
- a new approach for detection of absorbed zinc from sunscreens
Testing skin absorption - Stable Zn Isotopes

- To distinguish between Zn from sunscreen and that occurring naturally in the body (e.g. from diet), the ZnO used in sunscreens in our studies was enriched with the stable Zn isotope, ^{68}Zn (~18-20% w/w in oil/water “commercial” formulation) - i.e. not radioactive

- An increase in the amount of ^{68}Zn in blood and urine samples compared with control samples indicates Zn from sunscreen has entered the body
Human trials - Trial 1 & 2
Nanoparticle ZnO in sunscreen

Trial 1 – 2 males 51% enriched 68ZnO
1 day

Trial 2 – 51% enriched 68ZnO 5 days
Winter (July 2008)
Human trials - Trial 2

68Zn is tracer, 64Zn is natural abundance

Blood
- Max uptake day 14
- Cleared by day 50

Urine
- Max 5 days
- Cleared by day 22
Beach Trial 3-subjects & sampling

• Two groups of various: ages, skin types, countries, BMI
• Two sunscreens tested to compare effect of particle size:
 - “Nano” group (n=11) containing 19nm ZnO particles
 - “Bulk” group (n=9) >100nm particles
• ZnO uncoated
• Venous blood samples collected:
 – at the start of the trial,
 – twice daily during the trial, and
 – at 6 days post-trial.
• Sunscreen applied to backs of volunteers twice daily for 5 days/non ZnO formulation to exposed areas
• Subjects experienced a minimum of 1 hr UV exposure in two episodes following sunscreen application
• Urine sampled minimum 3 times daily
The volunteers
Analytical methods

Multicollector inductively coupled plasma mass spectrometer (RSES ANU)

Ultraclean chemistry
- Digest samples in clean HNO$_3$
- Anion exchange resin to separate Zn

Measures changes in amount of 68Zn in samples using isotope ratios

Zn is everywhere!!
Changes in amount of zinc in blood coming from sunscreen

Bar graphs showing the ratio $^{68}\text{Zn}/^{64}\text{Zn}$ in blood from subjects receiving bulk or nano sunscreens

- Each subject acts as their own control
- The pre-exposure data (red) illustrate the uniformity in $^{68}\text{Zn}/^{64}\text{Zn}$ ratios prior to sunscreen application, reflecting the isotopic composition of naturally-occurring Zn
- Statistically significant increases in the ratio in all subjects at end of the beach exposure phase (blue) and 6 days post-exposure (purple) are due to skin absorption of ^{68}Zn from the sunscreens
Urine results show Zn coming from sunscreen being wee’d out

- Larger increases in tracer ^{68}Zn than in blood
- Peak at Day 5 (end of days at beach)
- Still some ^{68}Zn signal at Day 40 in some subjects but most cleared by day 14
- Females (red) who had nano sunscreen had higher uptake of ^{68}Zn tracer than other groups
Summary - What did we find?

- In contrast to all previous studies, small amounts of Zn from our sunscreens found their way into the blood and urine of volunteers under real-life conditions.

- The amounts of Zn entering the body over the 5 day study (mean 15µg) were miniscule – around 1/1000th of the concentration of Zn already in the volunteers’ bloodstream (~12mg), and around 1/1000th of the amount of Zn recommended in a person’s daily diet.

- Even though some of the tracer Zn entered the bloodstream either as nanoparticles or soluble Zn, tracer was excreted in urine within a month.

- Thus the overwhelming majority of applied Zn was not absorbed.
Should we be concerned?

- **No** – given the tiny amounts we have detected with a very sensitive method
- **No** - given the absolutely critical need for Zn and homeostasis (‘tight control’) for Zn in the body
- **No** - Zn used in topical applications (ointments) for ~100 years and no reported ill effects
- **No** - for an occasional user going to the beach at weekends or even a 3 week holiday
- **Perhaps** - for occupational user and young children, BUT more research to find out if the Zn we found is present as nanoparticles in the body although new research is encouraging
- Until we know more SLIP/SLOP/SLAP shade. not at high UV time, & sunglasses!
Acknowledgements

Other collaborators
• David Andrews EWG Washington DC
• Laura Gomez, Alan Taylor (Macquarie University)
• Brent Baxter (Baxter Laboratories)
• Gavin Greenoak (Australian Photobiology Testing Facility)
• Les Kinsley (ANU)

Funding largely from Macquarie University and CSIRO
Thank you for your attention