

Molecular studies of sunscreen in humans

David Whiteman

Deputy Director Head, Cancer Control Group

Acknowledgements

Queensland University of Technology

Elke Hacker Zac Boyce

QIMR Berghofer

David Whiteman Nick Hayward Catherine Olsen Adele Green Thomas Pollack Sam Vaartjes

Louise Wilson

University of the Sunshine Coast Cancer Council Queensland

Michael Kimlin

Pathology services

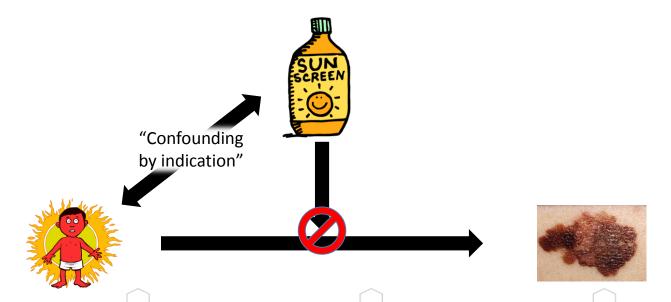
H Konrad Mueller

Australian Government

Australian Research Council

The ATLANTIC Philanthropies

Overview

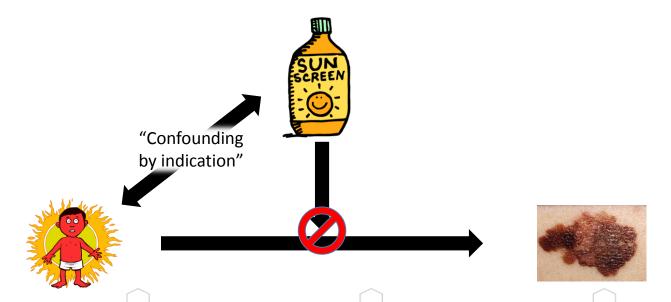


- 1. Sunscreen & skin cancer: epidemiologic challenges
- 2. DNA damage in skin cancer
- 3. An experiment
- 4. Systematic review
- 5. Summary and conclusions

Sunscreen for skin cancer prevention?

Epidemiologic data

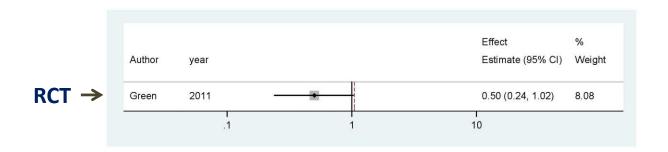
Observational studies → intractable confounding



Sunscreen for skin cancer prevention?

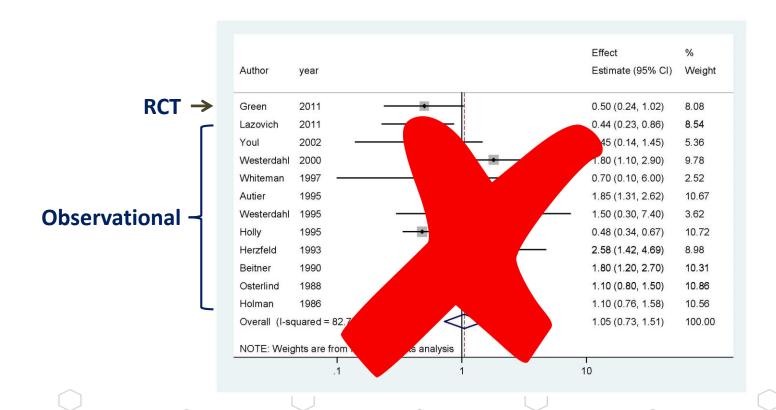
Epidemiologic data

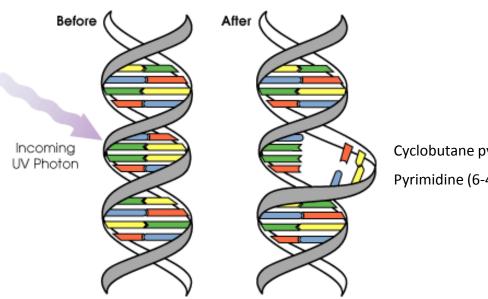
• Randomized trials → only one



Sunscreen for melanoma prevention?

First author	Location	Study design	Cases/controls	Exposure
(publication year)	Location	Study acsign	(Cohort size)	assessment
Green et al. 2011	Australia	RCT	33/1621	Assigned
Cho et al. 2005*	USA	Cohort	535/178,155 (F:152,949; M:25,206)	Self-report
Lazovich et al. 2011	USA	Case-control	1167/1101	Self-report
Youl et al. 2002*	Australia	Case-control	201/205	Self-report
Westerdahl et al. 2000	Sweden	Case-control	571/913	Self-report
Whiteman et al. 1997*	Australia	Case-control	52/156	Self-report
Autier et al. 1995*	Germany,	Case-control	418/438	Self-report
	Belgium, France			
Westerdahl et al. 1995	Sweden	Case-control	400/640	Self-report
Holly et al. 1995	USA	Case-control	452/930	Self-report
Herzfeld et al. 1993*	USA	Case-control	324/415	Self-report
Beitner et al. 1990*	Sweden	Case-control	523/505	Self-report
Osterlind et al. 1988	Denmark	Case-control	474/926	Self-report
Holman et al. 1986*	Australia	Case-control	507/507	Self-report


Sunscreen for melanoma prevention?

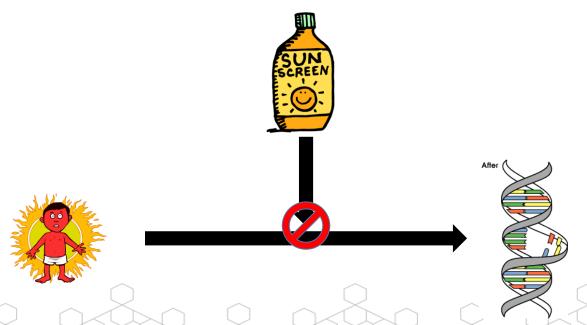

Source: Olsen et al. submitted (2017) 9 | 7

Sunscreen for melanoma prevention?

UV damage in skin cells

Cyclobutane pyrimidine dimers (CPD = TT, CT, TC)

Pyrimidine (6-4) pyrimidone photoproducts (6-4TT)


If photolesions not repaired... → fixed mutation in daughter cells

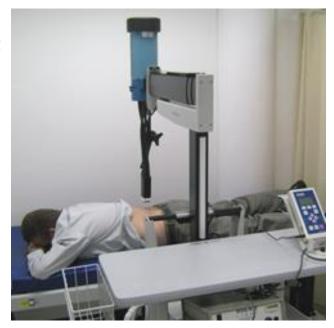
Biomarkers as an intermediate endpoint

Experimental data

• Biomarker / mutation studies

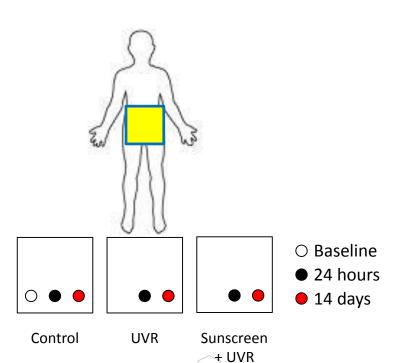
Effect of sunscreen on molecular & cellular markers

Pigment Cell Melanoma Res. 26; 835-844


ORIGINAL ARTICLE

The effect of *MC1R* variants and sunscreen on the response of human melanocytes in vivo to ultraviolet radiation and implications for melanoma

Elke Hacker^{1,2}, Zachary Boyce¹, Michael G. Kimlin¹, Leesa Wockner³, Thomas Pollak², Sam A. Vaartjes^{1,2}, Nicholas K. Hayward² and David C. Whiteman^{1,2}



Objectives

- Assess DNA damage in human skin in vivo before and after UVR exposure (2 MED)
- 2. Assess *melanocyte proliferation* in human skin *in vivo* before and after UVR exposure (2 MED)
- 3. Determine whether biomarkers affected by sunscreen

Design of study

SCREEN for eligibility / pigmentation

Baseline biopsy control skin
UV exposure - 2 MED at 2 sites

3 biopsies at 24 hr
-Control, UV, UV + sunscreen

(Day 2)
-Control, UV, UV + sunscreen

Participants

57 healthy Caucasian volunteers

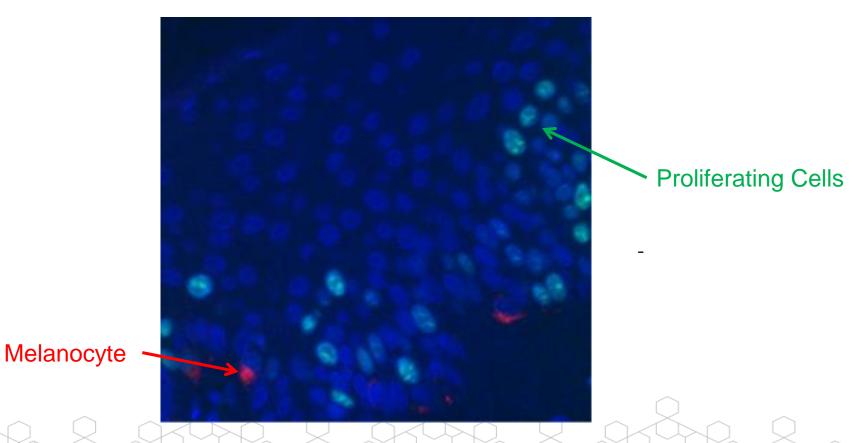
Mean age 25 years (range 18-34 yrs).

Fitzpatrick skin type

9% skin type 1

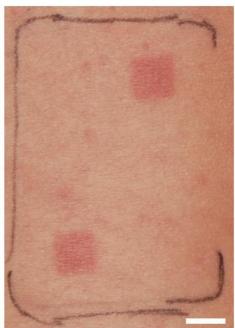
54% skin type 2

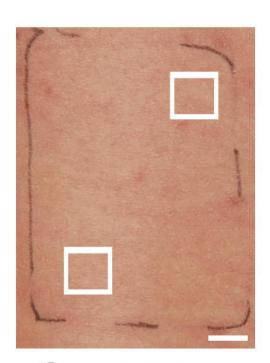
37% skin type 3



Biomarkers measured

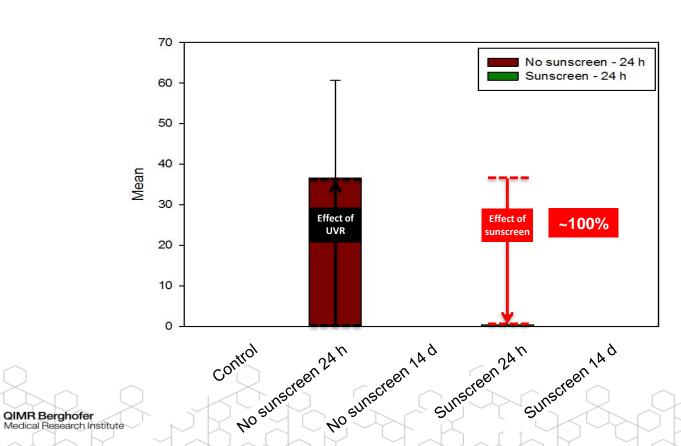
Biomarker	Biological interpretation
Erythema	Acute inflammation
CPD	UV-specific damage to DNA sequence
ki67	Marker of cell proliferation
p53	<u>Over</u> expression indicates DNA damage
Melanocyte counts	Melanocyte proliferation


Dual staining to observe effects

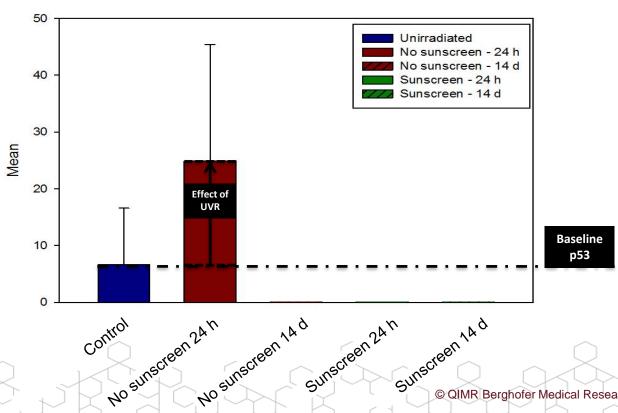


Effect of sunscreen on erythema

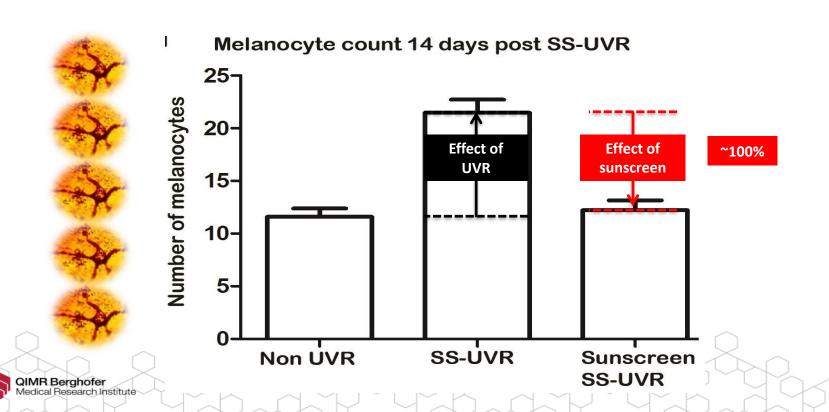
Non-UVR


SS-UVR

Sunscreen SS-UVR


Effect of sunscreen on CPDs

CPDs


Effect of sunscreen on p53

P53

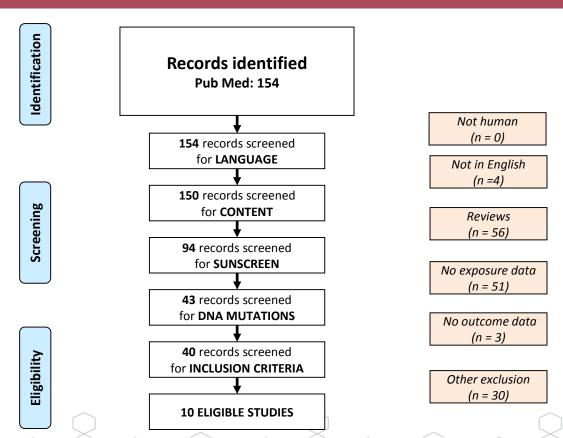
Effect on melanocyte counts

Summary of findings

- SPF 30+ sunscreen blocked virtually all UV-induced parameters measured:
 - Erythema
 - P53
 - CPD
 - Melanocyte proliferation

Photodermatology, Photoimmunology & Photomedicine

ORIGINAL ARTICLE


Prevention of DNA damage in human skin by topical sunscreens

Catherine M. Olsen^{1,2} D, Louise F. Wilson¹, Adèle C. Green^{1,2,3}, Neela Biswas¹, Juhi Loyalka¹ & David C. Whiteman^{1,2}

Source: Olsen et al. Photoderm Photoimmunol Photomed (2017)

10 ELIGIBLE STUDIES

Natural UVR

(n = 2)

Observational

UVB

(n = 2)

Experimental

SSUVR

(n = 6)

Experimental

First author (year)	DNA markers	Sample size	Sunscreen regimen
Young 1991	Unscheduled DNA synthesis	18	UVB sunscreen +/- 5- MOP
Van Praag 1993	TT dimer	10	SPF 10 30 mins prior
Bykov 1998	TT dimer	14	SPF 10
Young 2000	TT dimer, (6-4)PP	8	SPF 4 (UVB vs UVA filters) 20 mins prior
Ling 2001	TT dimer, P53	4	SPF 15 sunscreen 15 mins prior
Liardet 2001	CPD, p53, 8OHDG	8	SPF 15 15 mins prior
Mahroos 2002	TT dimer	18	SPF 15 30 mins prior
Hacker 2013	CPD, p53, Ki67, cell counts	57	SPF 30+ 20 mins prior

Source: Olsen et al. Photoderm Photoimmunol Photomed (2017)

First author (year)	DNA markers	Sample size	Sunscreen regimen	Biomarker
Young 1991	Unscheduled DNA synthesis	18	UVB sunscreen +/- 5- MOP	$\downarrow\downarrow\downarrow\downarrow\downarrow$
Van Praag 1993	TT dimer	10	SPF 10 30 mins prior	$\downarrow\downarrow\downarrow\downarrow\downarrow$
Bykov 1998	TT dimer	14	SPF 10	$\downarrow\downarrow\downarrow\downarrow\downarrow$
Young 2000	TT dimer, (6-4)PP	8	SPF 4 (UVB vs UVA filters) 20 mins prior	$\downarrow \downarrow$
Ling 2001	TT dimer, P53	4	SPF 15 sunscreen 15 mins prior	$\downarrow\downarrow\downarrow\downarrow\downarrow$
Liardet 2001	CPD, p53, 8OHDG	8	SPF 15 15 mins prior	$\downarrow\downarrow\downarrow\downarrow\downarrow$
Mahroos 2002	TT dimer	18	SPF 15 30 mins prior	$\downarrow\downarrow\downarrow\downarrow\downarrow$
Hacker 2013	CPD, p53, Ki67, cell counts	57	SPF 30+ 20 mins prior	$\downarrow\downarrow\downarrow\downarrow\downarrow$

Source: Olsen et al. Photoderm Photoimmunol Photomed (2017)

Summary of findings

- Literature not extensive
- Sunscreen (SPF 15+) attenuates short- (24 hrs) and mediumterm (14 d) biologic effects of UVR in human skin
- Higher SPF appears to confer higher attenuation than lower SPF

Conclusions

 Modern sunscreens prevent biological damage to human skin when applied before UVR exposure