Clinical Perspective: Acceptable absolutes and what to do with all the keratinocyte cancers

Scott W. Menzies Discipline of Dermatology The University of Sydney Sydney Melanoma Diagnostic Centre

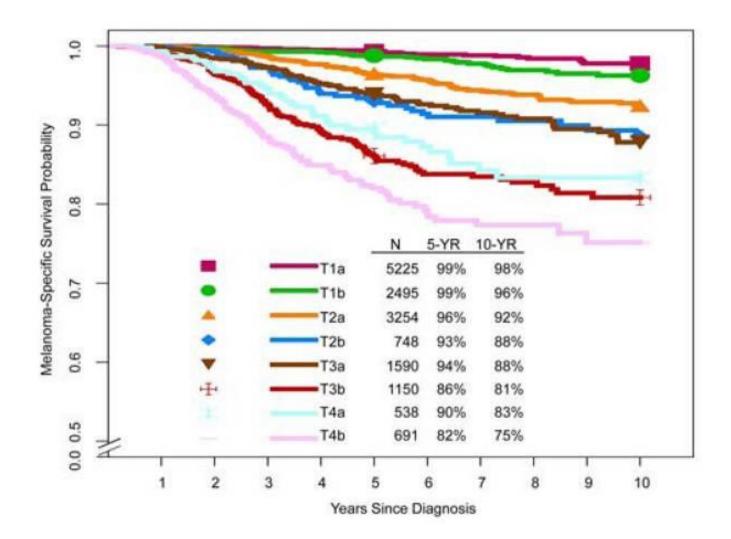
Acceptable absolutes

False Negative rates of screening

- Melanomas detected post-screening examination
 - Sensitivity at screening examination
 - Natural history of primary melanoma
 - Growth rates
 - Incidence of Interval tumours

False Negative rates screening Fritschi et al. Am J Epidem. 2006:164:385-390

- Lions Cancer Institute WA dermatologists/plastic surgeons community based 1994-2002
- Post screens follow-up cancer registry 2yrs

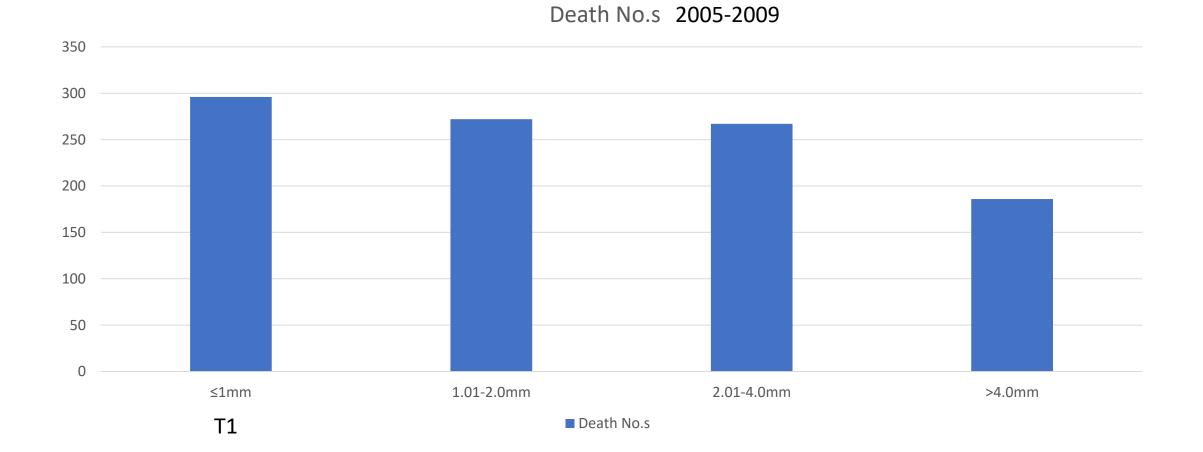

False Negative rates screening Fritschi et al. Am J Epidem. 2006:164:385-390

	Year 1	Year 2
Sensitivity invasive MM % (95% CI)	70 (51-84)	49 (34-64)

False Negative rates screening – What is acceptable?

	Year 1	Year 2
Sensitivity invasive MM % (95% CI)	70 (51-84)	49 (34-64)

If false negative MM thin (T1a) then ?OK



T1a < 0.8mm non-ulcerative

T1b < 1.0mm incl. ulcerative

Gershenwald et al. CA Cancer J Clin 2017;67:472-92

Who dies from Melanoma (QLD)? Whiteman et al. J Invest Derm 2015;135:1190-

Are we reducing thick tumours?

7yrs after screening began in Germany Stang et al. Eur J Epidemiology 2018: 33:303-12

- Data from North Rhine Westphalia (pop 18 Million)
- 2008-2015 (longest data yet published)

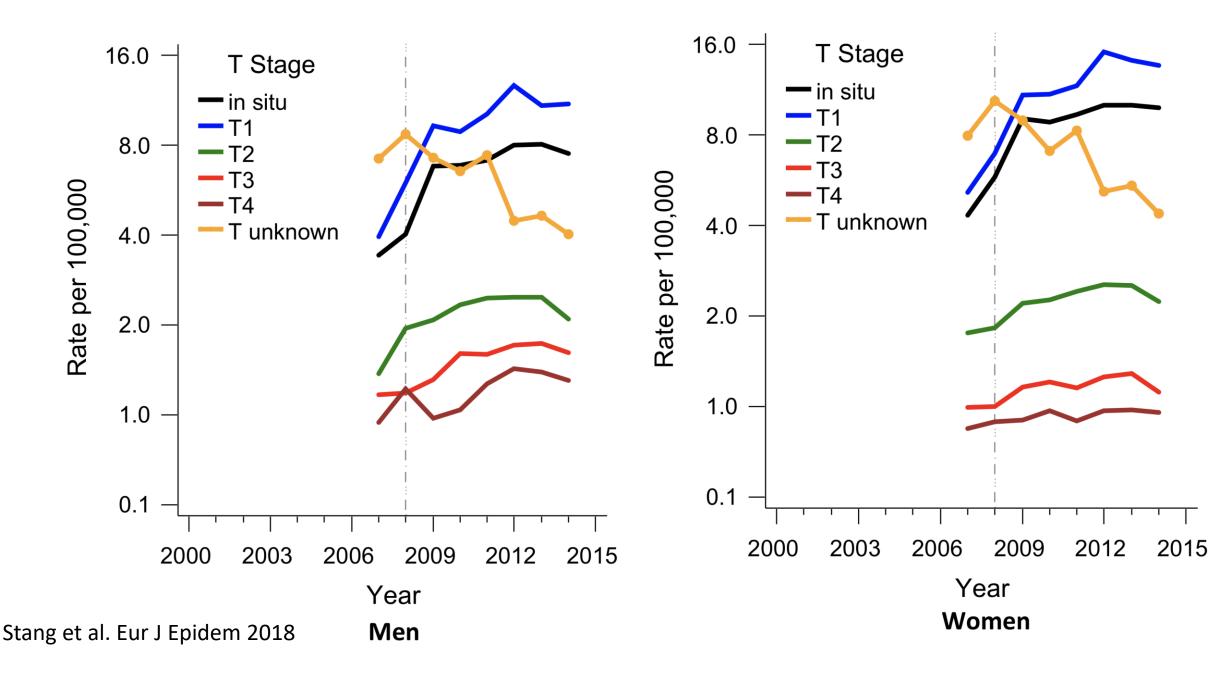
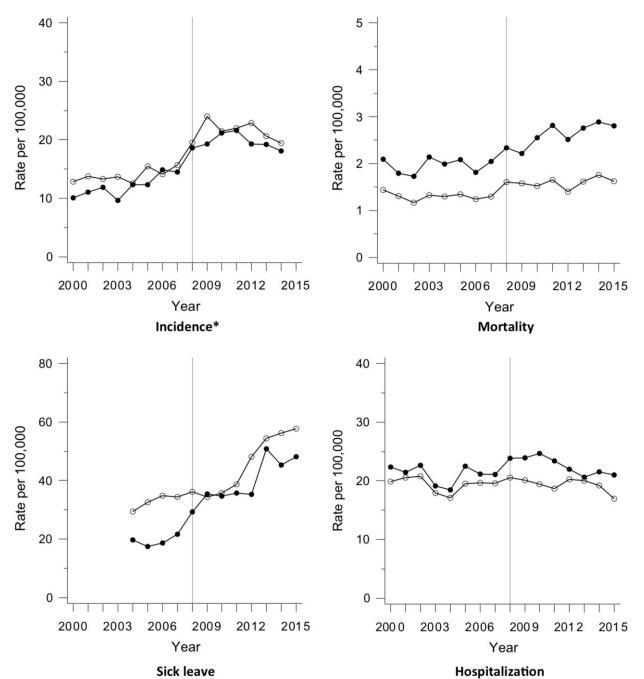


Fig. 3 T-stage specific age-standardized incidence rates of skin melanoma in North Rhine-Westphalia, Germany, 2007–2014.


Men

>75 yrs)

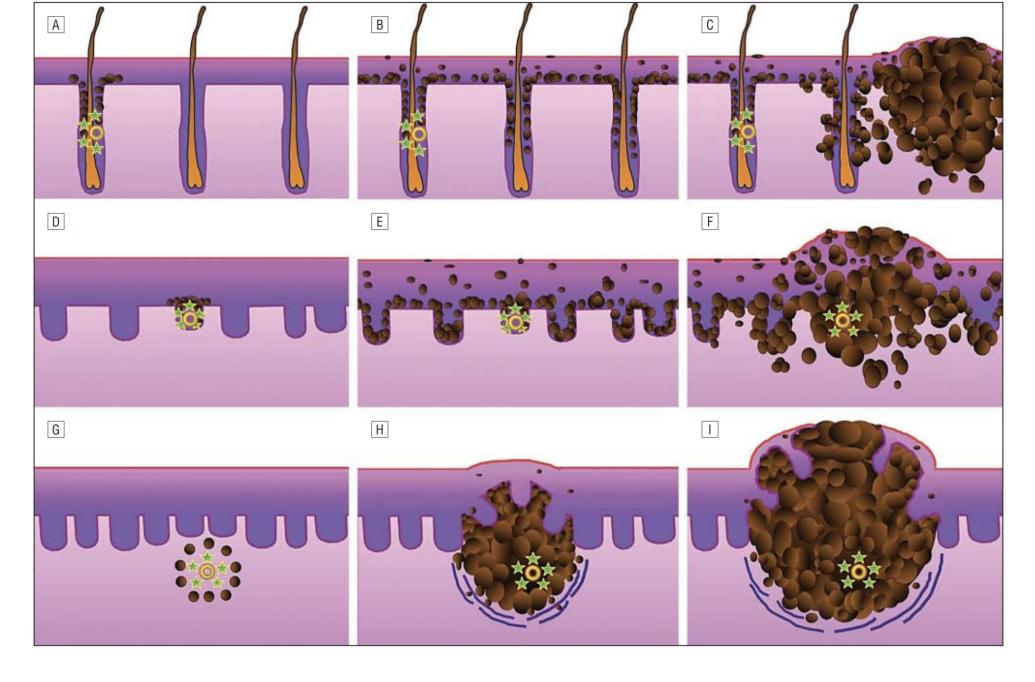
Mortality increase

mainly elderly men

and women (>70,

Melanoma

306


University of Pittsburgh prospective screening study Ferris et al. JAMA Oncol. 2017;3:1112-5

- Eligible $\geq 35 \ yrs$ if saw an internet training offered-PCP in 2014
- 53 000 Total body skin examination vs 280 000 not screened
- Adjusted RR 2.4 (95%CI:1.7-3.4) diagnosed melanoma in screened
 - Thinner MM in screened 0.37 vs 0.65mm
 - No difference in thick melanoma \geq 1 mm

Population-based Case-control QLD*

- First invasive primary MM diagnosed 20-75yrs between 2000-2003
- Whole-body skin exam three years before diagnosis 14% lower risk of thick MM (>0.75mm) & risk decreased as thickness increased (40% lower for MM >3mm).

*Aitken J et al. Int J Cancer 2010;126:450-58

Zalaudek et al. Arch Dermatol. 2008;144:1375-

Acceptable absolutes – *Tumour thickness*

- Reduction in absolute no.s of > T1a MM*
 - Inter-screening tumours
 - Total population

*T1a < 0.8mm non-ulcerative

Potential Harms screening*

- False Positive Rates
- Overdiagnosis ➤ overtreatment
- Negative psychosocial consequences
- Somatic complications

* Heleno B et al. BMJ 2013;347:f5334

Potential Harms Skin Cancer screening**

- False Positive Rates
- Overdiagnosis ➤ overtreatment NOT REPORTED
- Negative psychosocial consequences NOT REPORTED
- Somatic complications

**Systematic review US Preventative Services Task Force: Wernli K et al. AHRQ Publication No. 14-05210-EF-1 (2016)

False Positive Rates (NNT*): SCREEN STUDY (Schleswig-Holstein)

- July 2003 June 2004
- Population-based > 20yrs age
- Whole-body examination by mainly non-dermatologists >> referred suspicious lesions/higher risk patients to dermatologists

* Number Needed to Treat

Number of excisions to detect 1 cancer* NNT

Number of Excisions Needed to Detect 1 Case	Melanoma		Squamous Cell Carcinoma		Basal Cell Carcinoma			
Overall	28		41		9			
Female								
Age, years								
20–34	41		N/A		138			
35–49	30		579		34			
50–64	24		72		8			
≥65	22		14		4			
Total	28	28		56		10		
Male								
Age, years								
20–34	52		926		116			
35–49	55		435		35			
50–64	22		48		7			
≥65	20 •		12		4			
Total	28		28		7			

Waldmann et al. Arch Dermatol. 2012:148:903-10

*Based on one excision/person & one malignant per tumour per person

What is acceptable Melanoma NNT?

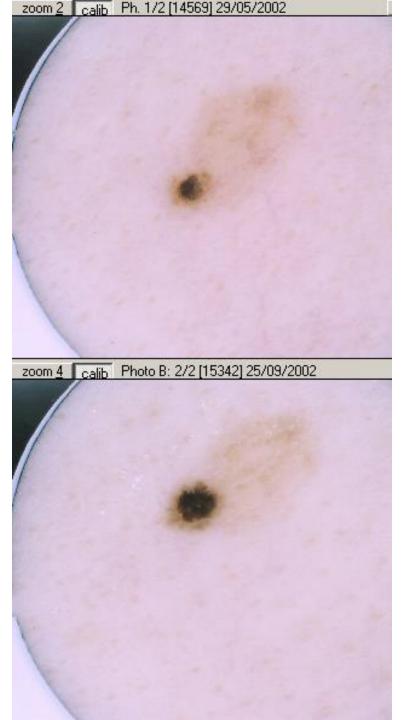
- NNT is <u>not</u> a measure of diagnostic sensitivity
- Impacts on Morbidity and Cost-effectiveness
- GPs Australian (generalist) 17
- GPs (solo skin cancer practice) 8.5
- Dermatologists Australia 12
- Dermatologists USA 15

Rolfe HM. Austral. J Dermatol. 2012;53:112-117

Rosendahl C et al. J Am Acad Dematol. 2012;67:846-52

Wilson R et al. J Dermatol. Treat 2012;23:65-9

What is acceptable Melanoma NNT?


• Need to use diagnostic techniques that *reduce NNT* while *increasing sensitivity* for MM

http://wiki.cancer.org.au/

Dermoscopy

Sequential digital dermoscopy monitoring

Cost difference — Tromme I et al. PLos One 2014; 14;9:e109339

- Belgium dermatologists (short and long term monitoring)
- Benign: Melanoma ratio excisions
 - 8.1 vs 2.5 (Dermoscopy monitoring)
- €1,600 vs 1,000 (monitoring) per melanoma detected

COST DIFFERENCE: Watts C et al. J Clin Oncol 2017:35:63-71

- AUSTRALIAN HIGH RISK COHORT: Dermoscopy monitoring and total body photography vs Standard Care over 10yrs
- A\$6800 per patient SAVED
 - Earlier detection
 - Reduced excisions

Stang et al. Eur J Epidemiology 2018: 33:303-12

 Number needed to screen (NNS) to prevent 1 extra death of melanoma in 2015*

34 000

- 90% deaths occurred people >50yrs of age
 NNS 26 000
- * Assuming a risk reduction of 50% due to screening

NNS for other cancers to save 1 extra life

- 320 Heavy smokers aged 55-74 yrs lung CT
- 402 aged 55-64 yrs sigmoidoscopy colorectal
- 500-1000 aged 50-69 yrs women biannual mammography for 10yrs

NNS 26 000 >50yrs for Melanoma

NNS for skin cancer to save 1 extra life

• What is acceptable ?

NNS of skin cancer to save 1 extra life

• What is acceptable ?

NNS 26 000 >50yrs for Melanoma*

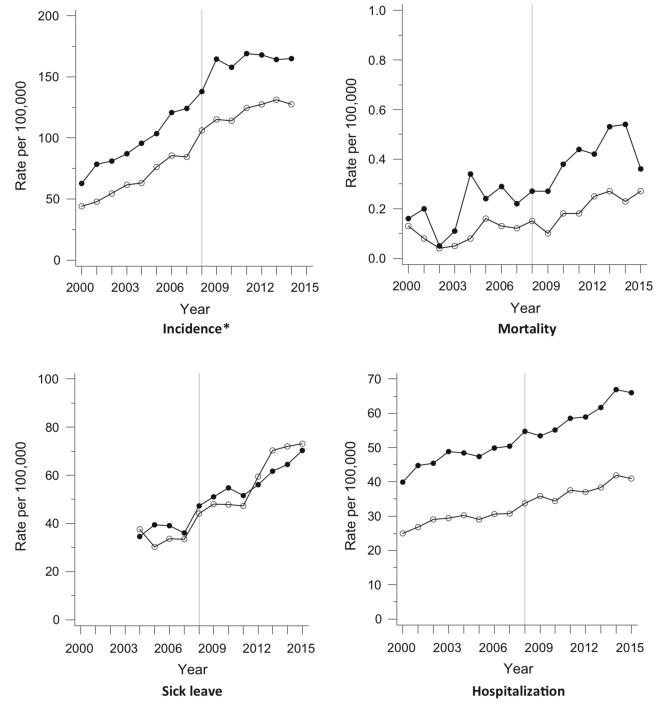
Similar figure calculated for Australia**

*Stang et al 2018

** Gilmour S, Plos One 2017

NNS of skin cancer to save 1 extra life

•What is acceptable ?


Reduce by targeting high risk individuals

What are we going to do with all the keratinocyte cancers?

Non-melanoma data

North Rhine-Westphalia

Percentage change after screening

• BCC 22-66% (m) 38-87% (f)

• SCC 15-49% (m) 16-63% (f)

Brunssen et al. J Am Acad Dermatol. 2017

Stang et al. Eur J Epidemiology 2018: 33:303-12

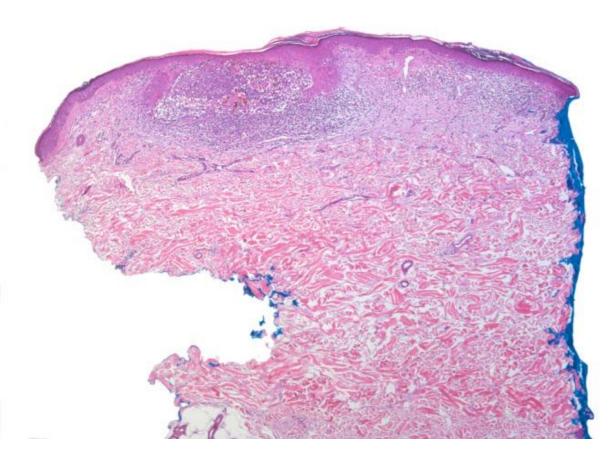
• Number needed to screen to prevent 1 extra death of NMSC* 191 000 (vs 34 000 for MM)

*Assuming 50% risk reduction in screenees

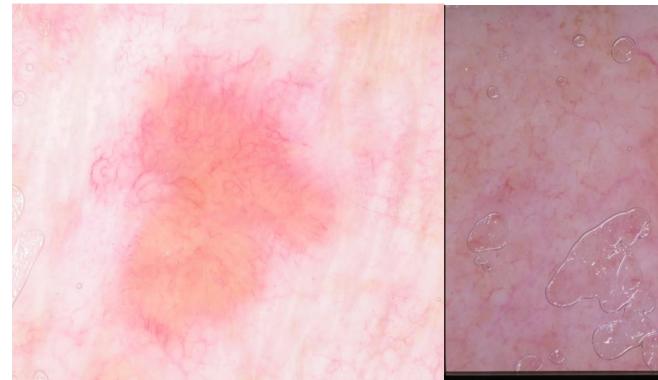
BCC

- Do not metastasize & No increase in all cause mortality
- Slow growing
 - Increase size 10% at 2-8 mo. and 81% at 5-10yrs
 - those treated 5-10yrs after first noticed only 6.6mm larger than those at first notice (Kricker JAAD 2014;70:456-)
- Largest associated with:
 - Older age & males
 - Ulceration, morpheaform, micronodular, superficial subtypes
 - No skin checks

Kricker et al. JAAD 2014;70:456-64 Wehner et al. JAAD 2018:78:663-72


Screening for BCC?

• Also undergo spontaneous regression Barnetson et al. Austral J


Dermatol. 1997 38:S63-5;

Regressing BCC Kulberg A

et al. Dermatol. Pract. Concept. 2016;6:13-18


 5% of histopathologically diagnosed lichenoid keratoses had BCC remnants after deeper sections

ALL INVASIVE MELANOMA

BCC mimics Amelanotic Melanoma

• Need to biopsy all

? Observe small flat low morbid lesions \succ Quantify spontaneous regression

- Low mortality (age-adjusted mortality 1 per 100 000 person years*) &
- Increased all cause mortality RR 1.25
- Rapid evolution
- Large lesions
 - >2cm diam ; > 2mm depth
 - most significant risk of death
 - Associated with regular screening (1-3 mo.)
 - Male

Kricker et al. JAAD 2014;70:456-64 Wehner et al. JAAD 2018;78:663-72

* 180 per 100 000 person years for all cancer

If agree to Screen <u>High Risk</u> MM patients ONLY

• pre-malignant and NMSC lesions (RR = 4.28: 95%CI:2.80-6.55)

Gandini et al. Eur J Cancer 2005;41:2040-59

What to do with these lesions in screenees?

- NNT is an order of magnitude lower for NMSC vs Melanoma !
- US dermatologists
 - 1.9 (NMSC) vs 17.4 MM
 - 1.6 (NMSC) vs 15 MM

Nault A et al. JAMA Dermatol. 2015;151:899-902 Wilson R et al. J Dermatol. Treat 2012;23:65-9

Summary: Acceptable absolutes

- 20% reduction in mortality adults
- Reduce NNS by targeting high risk individuals
- Reduction in absolute no.s of > T1a MM* *T1a < 0.8 mm non-ulcerative
 - Total population & inter-screening tumours
- Reduce NNT by using dermoscopy & dermoscopy monitoring (improves sensitivity)
- Negative psychosocial consequences & overdiagnosis quantify
- Treat all SCC
- Biopsy all BCC
 - Postime and the second second